\(\int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx\) [820]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 53 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {2 b \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a (a+b) d} \]

[Out]

2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-2*b*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))/a/(a+b)/d

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {4349, 3933, 2882, 2720, 2884} \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {2 b \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a d (a+b)} \]

[In]

Int[1/(Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])),x]

[Out]

(2*EllipticF[(c + d*x)/2, 2])/(a*d) - (2*b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a*(a + b)*d)

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2882

Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[d/b
, Int[1/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b, Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e +
f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3933

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[Sqrt[d*Sin[e
 + f*x]]*(Sqrt[d*Csc[e + f*x]]/d), Int[Sqrt[d*Sin[e + f*x]]/(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, d, e,
 f}, x] && NeQ[a^2 - b^2, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{a+b \sec (c+d x)} \, dx \\ & = \int \frac {\sqrt {\cos (c+d x)}}{b+a \cos (c+d x)} \, dx \\ & = \frac {\int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{a}-\frac {b \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a} \\ & = \frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {2 b \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a (a+b) d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.91 \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 b \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}}{a d} \]

[In]

Integrate[1/(Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])),x]

[Out]

(2*EllipticF[(c + d*x)/2, 2] - (2*b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b))/(a*d)

Maple [A] (verified)

Time = 4.80 (sec) , antiderivative size = 187, normalized size of antiderivative = 3.53

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \left (\operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a -b \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+b \operatorname {EllipticPi}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )\right )}{a \left (a -b \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(187\)

[In]

int(1/(a+b*sec(d*x+c))/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a-b*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+b*EllipticPi(cos(
1/2*d*x+1/2*c),2*a/(a-b),2^(1/2)))/a/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/
2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\text {Timed out} \]

[In]

integrate(1/(a+b*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate(1/(a+b*sec(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

Integral(1/((a + b*sec(c + d*x))*sqrt(cos(c + d*x))), x)

Maxima [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+b*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)*sqrt(cos(d*x + c))), x)

Giac [F]

\[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate(1/(a+b*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)*sqrt(cos(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \sec (c+d x))} \, dx=\int \frac {1}{\sqrt {\cos \left (c+d\,x\right )}\,\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )} \,d x \]

[In]

int(1/(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))),x)

[Out]

int(1/(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))), x)